Dynamics of dipole-mediated Rydberg energy transport published in Science! | November 2013 |

From a gas of ground state atoms we excited some atoms to highly excited Rydberg states. Similar to the light-harvesting complexes of photosynthesis, energy is transported from Rydberg atom to Rydberg atom, similar to a radio transmitter. To observe the transport of energy we use an electromagnetically induced transparency resonance, which makes up to 50 atoms absorb laser light within a characteristic radius around each Rydberg atom, making it possible to precisely measure the Rydberg atom distribution as a function of time. We were surprised to see that the Rydberg atoms quickly diffused from their original positions. Aided by a mathematical model we could show that the background gas of atoms crucially influences the energy transport dynamics, and the dynamics can be controlled by tuning the Rydberg-Rydberg interactions or the interaction with the laser fields.
| |

Reference:Observing the Dynamics of Dipole-Mediated Energy Transport by Interaction Enhanced Imaging, Science Express (2013), or see our full list of publications |